Sains Malaysiana 54(9)(2025): 2137-2149
http://doi.org/10.17576/jsm-2025-5409-03
Pengekstrakan dan Pengenalpastian Peptida Perencat α-Amilase daripada Benih Elateriospermum tapos
(Extraction and Identification of
α-Amylase Inhibitory Peptides from
Elateriospermum tapos Seeds)
PEI-GEE YAP, NAUFAL ARSHAD
& CHEE-YUEN GAN*
Pusat Penyelidikan Biokimia Analisis (ABrC), Kampus SAINS@USM, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan
Lepas, Pulau Pinang, Malaysia
Received: 14 March 2025/Accepted: 16 July 2025
Abstrak
Elateriospermum tapos adalah tumbuhan unik yang berasal dari Asia Tenggara, digunakan secara tradisi untuk merawat penyakit kronik termasuk kencing manis. Uji kaji ini bertujuan untuk mengekstrak dan mengenal pasti peptida perencat α-amilase daripada benih E. tapos. Protein daripada benih E. tapos (ETSPI) telah dihidrolisis dengan menggunakan enzim Neutrase dan darjah hidrolisis tertinggi (34.09±2.50%) diperoleh dari nisbah enzim-ke-substrat 1:10 (b/b) selama 4 jam. Aktiviti perencatan α-amilase tertinggi (41.74±1.45%) diperoleh pada nisbah yang sama tetapi pada masa hidrolisis selama 2 jam. Ultrafiltrasi kemudian digunakan untuk memecahkan hidrolisat dengan pecahan <3 kDa memberikan potensi yang paling tinggi dalam perencatan α-amilase. Dalam pecahan ini, empat peptida: ME, LLAH, LLHA dan LLPL telah dikenal pasti dan dipilih melalui teknik bantuan enzim yang digabungkan dengan pendekatan spektrometri jisim. Peptida ini diramalkan sebagai tidak toksik dan bukan agregat melalui pendekatan bioinformatik. Kajian hubungan aktiviti struktur menunjukkan bahawa semua peptida terpilih menunjukkan interaksi yang signifikan (nilai p PepSite2<0.25) dengan α-amilase pankreas and
air liur manusia. Aktiviti perencatan α-amilase peptida telah disahkan dengan nilai IC50 adalah seperti berikut: LLAH (2.88±0.01 mg/mL), LLHA (8.05±0.07 mg/mL),
LLPL (4.22±0.01 mg/mL) dan ME (1.41±0.00 mg/mL). Penemuan ini menunjukkan kejayaan pengenalpastian peptida perencat α-amilase dengan potensi aplikasi dalam penemuan ubat dan industri nutraseutikal.
Kata kunci: α-amilase; anti-kencing manis; bioinformatik; peptida bioaktif; terapi semula jadi
Abstract
Elateriospermum tapos is a unique plant native
to Southeast Asia, traditionally used to treat chronic diseases including
diabetes mellitus. This experiment aimed to extract and identify α-amylase
inhibitor peptides from E. tapos seeds. E. tapos seed protein isolate (ETSPI) was hydrolysed using Neutrase enzyme, obtaining the highest degree of
hydrolysis (34.09±2.50%) at enzyme-to-substrate ratio of 1:10 (w/w) over 4 h.
The highest α-amylase inhibitory activity (41.74±1.45%) was obtained at
the same ratio but at a hydrolysis time of 2 h. Ultrafiltration was used to
fractionate the hydrolysate, in which the fraction <3 kDa gave the most potent potential in inhibiting α-amylase. In this fraction,
four peptides: ME, LLAH, LLHA, and LLPL were identified and selected through
the enzyme-assisted technique incorporated with tandem mass spectrometry
approach. These peptides were predicted as non-toxic and non-aggregate through
bioinformatics approach. Structure activity relationship study demonstrated
that all selected peptides showed significant (PepSite2 p-value<0.25)
interaction with human pancreatic and salivary α-amylases. The
α-amylase inhibitory activity of the peptides was validated whereby the IC50 values were as follows: LLAH (2.88±0.01 mg/mL), LLHA (8.05±0.07 mg/mL), LLPL
(4.22±0.01 mg/mL), and ME (1.41±0.00 mg/mL). These findings demonstrated
successful identification of α-amylase inhibitor peptides with potential
applications in drug discovery and the nutraceutical industry.
Keywords: α-amylase; anti-diabetes;
bioactive peptide; bioinformatics; natural therapeutics
REFERENCES
Apostolidis, E., Kwon, Y.I. & Shetty, K.
2007. Inhibitory potential of herb, fruit, and fungal-enriched cheese against
key enzymes linked to type 2 diabetes and hypertension. Innovative Food
Science and Emerging Technologies 8(1): 46-54.
Arshad, N. & Gan, C.Y. 2019. Elateriospermum tapos seed protein as a new potential therapeutic for diabetes, obesity and
hypertension: Extraction and characterization of protein. Pertanika Journal of Tropical Agricultural
Science 42(1): 27-43.
Ashaolu, T.J.
& Suttikhana, I. 2023. Plant-based bioactive
peptides: A review of their relevant production strategies, in vivo bioactivities, action mechanisms and bioaccessibility. International Journal of Food Science and Technology 58(5): 2228-2235.
Baumann, C. & Zerbe, O. 2024. The role of
leucine and isoleucine in tuning the hydropathy of class A GPCRs. Proteins:
Structure, Function, and Bioinformatics 92(1): 15-23.
Choonhahirun, A.
2010. Proximate composition and functional properties of pra (Elateriospermun tapos Blume) seed flour. African Journal of Biotechnology 9(36): 5946-5949.
Daliri,
E.B.M., Oh, D.H. & Lee, B.H. 2017. Bioactive peptides. Foods 6(5):
32.
Dwevedi, A.
2016. Basics of enzyme immobilization. In Enzyme Immobilization.
Springer, Cham. hlm. 21-44.
Elodi, P., Mora, S. & Krysteva,
M. 2005. Investigation of the active center of
porcine-pancreatic amylase. European Journal of Biochemistry 24(3):
577-582.
Fan, H., Liu, H., Zhang,
Y., Zhang, S., Liu, T. & Wang, D. 2022. Review
on plant-derived bioactive peptides: Biological activities, mechanism of action
and utilizations in food development. Journal of Future Foods 2(2):
143-159.
Hoang, V.S. & Van Welzen, P.C. 2004.
Revision of Annesijoa, Elateriospermum and the introduced species of Hevea in Malesia (Euphorbiaceae). Blumea-Biodiversity, Evolution and
Biogeography of Plants 49(2-3): 425-440.
Ishikawa, K., Nakatani, H., Katsuya, Y. &
Fukazawa, C. 2007. Kinetic and structural analysis of enzyme sliding on a
substrate: Multiple attack in α-amylase. Biochemistry 46(3):
792-798.
Lan, X., Liao, D., Wu, S., Wang, F., Sun, J.
& Tong, Z. 2015. Rapid purification and characterization of angiotensin
converting enzyme inhibitory peptides from lizard fish protein hydrolysates
with magnetic affinity separation. Food Chemistry 182: 136-142.
Li, M., Chen, M., Sun, Y., Shi, L., Guo, X.,
Chen, S., Chen, L., Xiong, G., Sun, W., Gao, R., Ke, L., Wang, L. & Wu, W.
2025. Novel computational approaches in the discovery and identification of
bioactive peptides: A bioinformatics perspective. Journal of Agricultural
and Food Chemistry 73(22): 13212-13228.
Li, W., Yang, S., An, J., Wang, M., Li, H.
& Liu, X. 2024. Statistical characterization of food-derived α-amylase
inhibitory peptides: Computer simulation and partial least squares regression
analysis. Molecules 29(2): 395.
Li, Y.M., Yuan, J., Ren, H., Ji, C.Y., Tao, Y.,
Wu, Y., Chou, L.Y., Zhang, Y.B. & Cheng, L. 2021. Fine-tuning the
micro-environment to optimize the catalytic activity of enzymes immobilized in
multivariate metal–organic frameworks. Journal of the American Chemical
Society 143(37): 15378-15390.
Mora, L., González-Rogel, D., Heres, A. & Toldrá, F. 2020.
Iberian dry-cured ham as a potential source of α-glucosidase-inhibitory
peptides. Journal of Functional Foods 67: 103840.
Naeem, M., Malik, M.I.,
Umar, T., Ashraf, S. & Ahmad, A. 2022. A
comprehensive review about bioactive peptides: Sources to future perspective. International
Journal of Peptide Research and Therapeutics 28(6): 155.
Ngoh, Y.Y. & Gan, C.Y. 2016.
Enzyme-assisted extraction and identification of antioxidative
and α-amylase inhibitory peptides from Pinto beans (Phaseolus
vulgaris cv. Pinto). Food Chemistry 190: 331-337.
Nguyen, P.H., Sterpone, F.
& Derreumaux, P. 2020. Aggregation
of disease-related peptides. Progress in Molecular Biology and Translational
Science 170: 435-460.
Nirmal, N., Khanashyam,
A.C., Shah, K., Awasti, N., Sajith Babu, K., Ucak, İ., Afreen, M., Hassoun, A. & Tuanthong, A. 2024. Plant protein-derived peptides:
Frontiers in sustainable food system and applications. Frontiers in
Sustainable Food Systems 8: 1292297.
Patil, H. & Post, G. 2017. Kjeldahl
Method - Estimation of Protein in Food - Discover Food Tech. http://discoverfoodtech.com/protein-estimation-by-kjeldahl-method/ Diakses pada November 12, 2018.
Rambaran, R.N. & Serpell, L.C. 2010.
Amyloid fibrils. Prion 2(3): 112-117.
Rodhi, A.M., Yap, P.G., Olalere, O.A. &
Gan, C.Y. 2024. Unveiling α-amylase inhibition: A bioinformatics
perspective on peptide properties and amino acid contributions. Journal
of Molecular Structure 1305: 137768.
Sarah, S.A., Faradalila,
W.N., Salwani, M.S., Amin, I., Karsani,
S.A. & Sazili, A.Q. 2016. LC-QTOF-MS
identification of porcine-specific peptide in heat treated pork identifies
candidate markers for meat species determination. Food Chemistry 199:
157-164.
Shahbal, N.,
Jing, X., Bhandari, B., Dayananda, B. & Prakash, S. 2023. Effect of
enzymatic hydrolysis on solubility and surface properties of pea, rice, hemp,
and oat proteins: Implication on high protein concentrations. Food
Bioscience 53: 102515.
Silva, A.C.S. & Silveir,
J.N. 2013. Correlation between the degree of hydrolysis and the peptide profile
of whey protein concentrate hydrolysates: Effect of the enzyme type and
reaction time. American Journal of Food Technology 8(1): 1-16.
Su, Y., Chen, S., Liu, S., Wang, Y., Chen, X.,
Xu, M., Cai, S., Pan, N., Qiao, K., Chen, B., Yang, S. & Liu, Z. 2023.
Affinity purification and molecular characterization of angiotensin-converting
enzyme (ACE)-inhibitory peptides from Takifugu flavidus. Marine Drugs 21(10): 522.
Sun, L., Liu, J., He, Z. & Du, R. 2024.
Plant-derived as alternatives to animal-derived bioactive peptides: A review of
the preparation, bioactivities, structure–activity relationships, and
applications in chronic diseases. Nutrients 16(19): 3277.
Tan, X., Zhang, S., Malde,
A.K., Tan, X. & Gilbert, R.G. 2022. Effects of chickpea protein fractions
on α-amylase activity in digestion. Food Hydrocolloids 133: 108005.
Trabuco, L.G., Lise, S.,
Petsalaki, E. & Russell, R.B. 2012. PepSite: Prediction of peptide-binding
sites from protein surfaces. Nucleic Acids Research 40: 423-427.
Udenigwe, C.C.
2014. Bioinformatics approaches, prospects and challenges of food bioactive
peptide research. Trends in Food Science and Technology 36(2): 137-143.
Waterborg, J.H.
2002. The Lowry method for protein quantitation. Dlm. The Protein Protocols Handbook, disunting oleh Walker, J.M. Humana Press: Springer Protocols Handbooks. hlm. 7-10.
Yang, J., Huang, J., Zhu,
Z. & Huang, M. 2020. Investigation
of optimal conditions for production of antioxidant peptides from duck blood
plasma: Response surface methodology. Poultry Science 99(12): 7159-7168.
Yong, O.Y. & Salimon,
J. 2006. Characteristics of Elateriospermum tapos seed oil as a new source of oilseed. Industrial
Crops and Products 24(2): 146-151.
Yu, Z., Yin, Y., Zhao, W., Yu, Y., Liu, B.,
Liu, J. & Chen, F. 2011. Novel peptides derived from egg white protein
inhibiting alpha-glucosidase. Food Chemistry 129(4): 1376-1382.
Zhang, Y. & Romero, H.M. 2020. Exploring
the structure-function relationship of Great Northern and navy bean (Phaseolus
vulgaris L.) protein hydrolysates: A study on the effect of enzymatic
hydrolysis. International Journal of Biological Macromolecules 162:
1516-1525.
*Corresponding author; email: cygan@usm.my